Fighting The Flu In The Future - NewsChannel5.com | Nashville News, Weather & Sports

Fighting The Flu In The Future

Posted: Updated:

EAST LANSING, Mich. (Ivanhoe Newswire) - It's the season for sneezin', sniffles, and sickness.  Every year, between five and 20 percent of the US population gets the flu and the infected could be passing it on to you before they even know they're sick. Researchers are hard at work developing better ways to fight the flu.

It's a three letter word that might bring to mind a lot of four letter words.

Chemical Engineer, Tim Whitehead, and a team of researchers from across the US want to wipe it out.

"And so this is a powerful new approach," Tim Whitehead at Michigan State University told Ivanhoe.

Using super computers they're designing proteins from scratch that are able to find a vulnerable portion of the virus that is in most common strains and latch on.

"That was an Achilles' heel for the virus," Whitehead explained.

In the lab, the proteins have been tested in animal cells.

"In the presence of our protein, the cells aren't infected," Whitehead said.

Meanwhile, Wired.com reports, Craig Venter, who helped sequence the human genome wants us all to be able to print flu vaccines.  At a recent health conference, Venter said his team is working on digitizing vaccines that could be emailed, downloaded, printed from a special device, and injected.

From printed protection to powerful proteins, soon the flu might not stand a chance.

Whitehead said the flu protein is separate from a vaccine and the idea is to administer it before or after an outbreak.  He said we are about five to ten years from human testing.  As for printable vaccines, Wired.com reports, Venter's team is currently testing a biological printer, but there are a lot of regulatory issues to consider before it ever becomes a reality.

RESEARCH SUMMARY

BACKGROUND:    Body aches, fever, tiredness, sore throat, headaches, chills, fatigue, nausea, vomiting, and cough; all symptoms of the dreaded flu.  Normally those who have the flu know it, but in some less severe cases symptoms can be similar to the common cold.  Medical attention should be sought if there are symptoms like severe vomiting, confusion, sudden dizziness, seizures, or difficulty breathing.  Children, pregnant women, seniors, people with health conditions, those who travel, and people with disabilities are at an increased risk of becoming infected with the flu.  With so many at risk, newer and better vaccinations are always in the works.  (Source:  flu.gov)

HOW TO CARE FOR ONE WITH THE FLU:  When caring for someone who is infected with the flu virus, there are certain precautions that should be followed.  First make sure the sick person follows all instructions given by their doctor and make sure they take all of their recommended medications.  Keep the sick person away from other people as much as possible, isolating them to a specific "sick room" is recommended. (Source: flu.gov)

TREATMENT:  The flu can be treated with or without medications.  Over-the-counter medications may relieve symptoms, but they will not make you less contagious.  Sometimes the health care professional may prescribe antiviral medications to prevent further complications.  Antibiotics can be prescribed if the flu has progressed to a bacterial infection (Source: flu.gov).

NEW TECHNOLOGIES FOR VACCINATIONS:  Most of us all know about the flu, how it can make you feel, and how to prevent it.  New technology is being developed to allow vaccinations to be more effective and easily accessible.  Super computers have been designed to produce proteins from scratch that will find the weakest part of the virus and attack it.   The proteins are not a vaccine.  They are suggested to be administered after or before a flu outbreak.  However, professionals are developing a new kind of vaccination, software that will allow people to print a vaccine on a 3-D computer and then inject it on the spot to prevent the flu.  Geneticist, Craig Venter, and his team are testing the digital biological converter.  This would revolutionize healthcare and biological warfare.  For example, if an area became infected with a deadly virus and they are isolated from the rest of the world, sending a vaccination electronically would save many lives. While this is a revolutionary idea, there are dangers of spam interference and regulation. (Source: wired.com)

INTERVIEW

Tim Whitehead, PhD, Assistant Professor and Chemical Engineer in Material Science as well as Bio systems and Agricultural Engineering, Michigan State University talks about a protein that inhibits the flu virus.

How many degrees do you have?

Dr. Whitehead:  I have Bachelors in Engineering from Vanderbilt and I have a Ph.D.

This research that you did seems pretty exciting to have a protein to basically render the flu virus ineffective.  Is that basically the gist of it?

Dr. Whitehead: That's exactly the gist of it.

So what's the process like?

Dr. Whitehead:  About two and a half years ago some exciting results from Scripts Institute as well as Harvard University identified a portion of the flu virus that was an Achilles heel for the virus. So it's something that is conserved among many different subtypes of the virus, things as varied as swine flu to avian flu. And this Achilles heel these groups targeted with antibodies and they can show that these antibodies render them ineffective. So we asked a simple very broad scientific question at the outset. We know enough to actually design a protein on the computer to go and attack that same area and actually inhibit the flu virus by attacking and binding at that Achilles heel. So that's what we set out to do and it turns out that we were successful for a couple of our designs, we tested many and a couple of these were successful in actually binding the site. What we showed just recently is that we could optimize these sequences using a pretty powerful protein engineering technique. And one of these candidates could actually neutralize the flu at therapeutically relevant doses.

So when you say engineered on a computer, talk to me about how that process works.

Dr. Whitehead: Sure. What we do with that is we take a surface of a molecule. In this case with the flu there's a specific protein called hemagglutinin. You may have heard of H1N1 or H5N1, the hemagglutinin is the H portion of that. There's a specific patch on that protein which if you bind there can render these viruses ineffective. We can take the three dimensional coordinates of that patch which is known and we can find protein sequences that can bind at that patch. And so this is a question about how do you get something to bind to another thing. You know Velcro binds or silly glue binds on things. At the molecular level you have between proteins you have surfaces that are geometrically aligned almost like a hand in a glove. Where you would have to get these two surfaces to intertwine and not only that but there are certain patches on that surface that have to interact correctly. So grease goes with grease watery things or more hydrophilic things go with watery things and you have to do this at atomic precision. Using a code called Rosetta developed by David Baker's lab at the University of Washington in which this work was done we were able to uh—optimize protein sequences to bind this specific region. And this requires as you imagine super computers and a huge distributed competing network called Rosetta at home where hundreds of thousands of people worldwide download our computer software and actually run the code to determine these sequences for us. We can get these designs out. There are hundreds of them and we can actually test them in the lab. We can actually order synthetic genes, this is now as easy as just calling up a company and e-mailing a sequence and they can deliver them in a white vial in two weeks. And then we can test them.

So you came up with the design for the protein they thought would render the flu virus harmless and then you sent it away and had it made?

Dr. Whitehead: Right. So what we can do is we can send away the DNA encoding these proteins and then the DNA comes and then we can pass them pretty quickly in locked boxes. As you can imagine these are early days in designing proteins but a couple succeeded. So that's where we are.

So it's the DNA deep sequencing.  Can you break that down for me?

Dr. Whitehead: Sure.  What we did at that stage is we had a couple designs that worked, that bound these proteins.  But they were very, very weak, okay. What we did then is we had to figure out how to make the binding as strong as possible. A weak binder is not going to neutralize flu; we need it strong as possible to neutralize the flu. So to do that we developed a method at the University of Washington and in conjunction with other groups to be able to see how every change on a protein sequence relates to its function.

Dr. Whitehead: Most people probably know the alphabet of DNA it four letters long. For protein it's twenty letters long. So for every protein sequence you have twenty different letters you can do at each point. And what we did is we developed a method to be able to see how well each letter or each mutation does for binding. And we can do this in a very high thorough quick fashion at once. And what you're looking at is the boxes, the black boxes means that binding is about the same as before, red means binding has improved and green means binding is worse. And we're able to do this in a very, very high thorough quick fashion. And from that we're able to pick and choose mutations that could confer improvements in binding and we can pick eight or ten of them at once. Our designs are not perfect at the front but very quickly using this DNA deep sequencing technology we're able to identify the eight or ten mutations that when combined can actually make these molecules potent against things like flu.

So once you have the engineered protein what do you do with it?

Dr. Whitehead:  When we had the engineered protein and we made sure that these combined the hemagglutinin molecule with binding characteristics, our collaborators at the Naval Health Research Center were able to go and test the ability of these molecules to block influenza infections in cell culture models. So that's where we are right now and comparing them to the antibodies that bind the same region we're at about the same level, maybe a little better in terms of concentration but only slightly. So we're at approximately the same level. So the next step is to actually test this in animal models.

So another cell—

Dr. Whitehead: So you have human cells and then you infect them with flu and a lot of them die but when in the presence of our protein the cells aren't infected.

How did that feel to know that actually happened?

Dr. Whitehead:  We're pretty excited.  We thought that was going to work but it really was exciting to have these designs work as we intended them to do. This is a powerful new approach where you can actually design for first principles something that can go and neutralize something as complicated as a flu virus and get it to work in the computer and then rapidly optimize it using the approaches we developed and then actually have it neutralize as well.

Will this work on every strain or do you have to kind of keep redesigning for other strains?

Dr. Whitehead: The reason we attacked the portion of the molecule that we did is because it is common to most strains, including many of the pandemic strains of the virus. This portion isn't common to all though. So for example the pandemic Hong Kong flu from 1968 does not share this epitope. So right now at the Institute for Protein Design our researchers are designing things also and I'm cautiously optimistic that they are going to be successful on that front. We tested it against two different strains of H1N1 in the live virus models and others have been tested but we haven't published them yet so I can't speak of them right now.

You seem excited talking about this, this could be definitely something to change the world.

Dr. Whitehead: Right. We're—we're really excited not only for flu but in general about designing proteins from scratch. In the case of flu, because of the research at Scripts and at Harvard, we are able to have a good target. If we have that target we're pretty confident now that we can design proteins that can for example, bind that patch and then we can optimize this using deep sequencing to have a protein at the end of the day that can prevent things like pandemic viruses.

Would it be something that would be added to the flu vaccine or would it be in pill form down the road?

Dr. Whitehead: Of course there's a long road ahead involving things far beyond academic labs. But if it were to get to that stage, some of these governments would stock pile hundreds of millions of doses and then in the awful event of a new pandemic strain this could be a treatment. So you can either administer it before infection or after infection is the idea. But it would be completely separate from a vaccine or a universal vaccine that other groups are working on.

And this could be used in other areas as well not just the flu?

Dr. Whitehead: We think this is great days for protein design. Where you can design a protein to have a function whether it can inhibit a flu virus or target cancer, which is what I'm working on right now. Or actually developing new enzymes or new proteins that can break down biomass which is why I'm here at Michigan State among many other things that proteins can do. And so we think that this general strategy of designing proteins computationally and then optimizing them very quickly and rapidly using deep sequencing is going to be a very promising approach in the future.

Have the proteins been used in the past, it seems like you don't really hear people trying to manipulate proteins?

Dr. Whitehead: There's a pretty large field of antibody engineering. Antibodies are just complicated proteins that the immune system uses to to attack and destroy pathogens. There's a pretty large field of people engineering antibodies. Pfizer down the road in Kalamazoo, Michigan or in any number of sites like Boston or South San Francisco there are pharmaceutical companies working on those type of treatments.

But that is a single protein that you work for how long?

Dr. Whitehead:  Most of the cancer therapies that actually exist -- Herceptin is a big example -- are their monoclonal antibodies. They're a single protein that does this. But the strategy to develop these proteins is long and laborious over two years. Whereas we want to do this in two weeks and we think we can now. For this project it took two years and two post docs, two PI's and a grad student to deliver these proteins. I was one of the post docs on that project. But in the future we want to do this in two weeks and we think we can. And we think that we can leap frog advances made by people doing monoclonal antibodies in the future using this joint experimental and computational approach.

So smallpox as well is something you're looking at?

Dr. Whitehead:   The Institute of Prtein Design at the University of Washington is looking at smallpox right now.

Is there anything I missed you think is important for people to know?

Dr. Whitehead: I think the credit goes to David Baker at the University of Washington, let's make sure that's mentioned.  I think the Rosetta code is good and the other thing is the Rosetta at home project I'd light to highlight. So that is a distributive computing for the code where you can download this on your personal computer and have it run code that can design proteins to cure the flu.

So hundreds of thousands of people pitch in to try to determine what code is best to make the proteins to fight flu?

Dr. Whitehead: Yes. You design a computer program and you send it out to these different homes across the world. This is like the third or fourth biggest. I think SETI is the biggest.

So Rosetta code is the name of the program?

Dr. Whitehead: Yes, Rosetta.

Who can log on and do that?

Dr. Whitehead: Anyone can go and download the Rosetta at home it's just a screen saver.

Is it closed now?

Dr. Whitehead:  Rosetta At Home, no it's still open. But what happened is the users wanted to actually play with the molecules themselves, the protein because you could see how the protein is changing etc. So there was a computer science professor that worked with David at University of Washington to develop a game called fold.it, so fold.it, and tens of thousands of people played this and it's actually an interactive game where you can try to make the best protein structure. They try to design the best flu, the anti flu molecule. If we can get a hundred thousand designs out and we can cull and pick out the best ten that's still better than having the best protein designers in the world at the fold.it game go and design us a couple. But they're getting good, they're getting really good.

So how much input did the people at home add to the protein project?

Dr. Whitehead:  They put a lot of the resources in getting the infrastructure built and then we wrote the program for them to actually run. So with all this infrastructure that has been built up over the last ten years or so it has enabled us to do the kind of work that we're doing.

This is it: Solve Puzzles for Science.

So you can call in and say how did you do that?

Dr. Whitehead: Yes and they're really, really nice, they're really excited to explain how they did it. So a lot of people have science backgrounds but not everyone, in fact some of the best players in the world have a high school education and they just see proteins better than anyone in my lab or myself.

FOR MORE INFORMATION, PLEASE CONTACT:

Tim Whitehead, PhD
Michigan State University
(517) 432-2097
taw@msu.edu

  • Medical News HeadlinesMedical News HeadlinesMore>>

  • Nasal Spray For Alzheimer's

    Nasal Spray For Alzheimer's

    Wednesday, July 23 2014 5:15 PM EDT2014-07-23 21:15:11 GMT
    Every 70 seconds, someone in the U.S. develops Alzheimer’s disease. There is no cure, but there is new hope. From July 12-17, the greatest minds in Alzheimer’s research gathered in Copenhagen, Denmark discussing the latest breakthroughs and developments in this disease.more>>
    Every 70 seconds, someone in the U.S. develops Alzheimer’s disease. There is no cure, but there is new hope. From July 12-17, the greatest minds in Alzheimer’s research gathered in Copenhagen, Denmark discussing the latest breakthroughs and developments in this disease.more>>
  • Drug To Prevent Alzheimer's

    Drug To Prevent Alzheimer's

    Tuesday, July 22 2014 5:15 PM EDT2014-07-22 21:15:05 GMT
    Everyone-- no matter if you are a man or woman, family history or not-- with a brain is at risk for Alzheimer’s disease. Age is the biggest risk factor and America is aging. Right now, dozens of research sites across the country are testing an experimental drug to see if it might prevent memory loss associated with this terrible disease.more>>
    Everyone-- no matter if you are a man or woman, family history or not-- with a brain is at risk for Alzheimer’s disease. Age is the biggest risk factor and America is aging. Right now, dozens of research sites across the country are testing an experimental drug to see if it might prevent memory loss associated with this terrible disease.more>>
  • Could Down Syndrome Be The Key To Alzheimer's?

    Could Down Syndrome Be The Key To Alzheimer's?

    Monday, July 21 2014 5:15 PM EDT2014-07-21 21:15:13 GMT
    More than five million Americans are living with Alzheimer’s. More than 400,000 of them also have Down syndrome. What does a condition seen at birth have in common with a disease typically diagnosed in the elderly? Quite a bit.more>>
    More than five million Americans are living with Alzheimer’s. More than 400,000 of them also have Down syndrome. What does a condition seen at birth have in common with a disease typically diagnosed in the elderly? Quite a bit.more>>
  • Extreme Workouts

    Extreme Workouts

    Friday, July 18 2014 6:04 PM EDT2014-07-18 22:04:23 GMT
    Workout routines have taken a tortuous turn. Running through mud and fighting in cages are just some of the latest extreme workouts, but one wrong move and you could be in trouble.more>>
    Workout routines have taken a tortuous turn. Running through mud and fighting in cages are just some of the latest extreme workouts, but one wrong move and you could be in trouble.more>>
  • Extreme Skin

    Extreme Skin

    Thursday, July 17 2014 5:15 PM EDT2014-07-17 21:15:05 GMT
    Last year, Americans underwent more than 11-million cosmetic procedures and spent nearly $12-billion on skin rejuvenation. Everyone wants their skin to look younger, healthier and better, but some are taking it to an extreme.more>>
    Last year, Americans underwent more than 11-million cosmetic procedures and spent nearly $12-billion on skin rejuvenation. Everyone wants their skin to look younger, healthier and better, but some are taking it to an extreme.more>>
  • Extreme Diets

    Extreme Diets

    Wednesday, July 16 2014 5:15 PM EDT2014-07-16 21:15:07 GMT
    Dieting is an American pastime. About 45-million of us diet each year, and we spend about $33-billion on weight-loss products. There are more ways to diet than ever and some are pretty extreme.more>>
    Dieting is an American pastime. About 45-million of us diet each year, and we spend about $33-billion on weight-loss products. There are more ways to diet than ever and some are pretty extreme.more>>
  • Frozen Lumpectomy For Prostate

    Frozen Lumpectomy For Prostate

    Tuesday, July 15 2014 5:15 PM EDT2014-07-15 21:15:08 GMT
    More than 230,000 men will be diagnosed with prostate cancer this year according to the American Cancer Society. In most cases, surgical removal of the gland is considered the gold standard of treatment, but results of a new study suggest a new treatment might benefit some patients.more>>
    More than 230,000 men will be diagnosed with prostate cancer this year according to the American Cancer Society. In most cases, surgical removal of the gland is considered the gold standard of treatment, but results of a new study suggest a new treatment might benefit some patients.more>>
  • Bariatric Surgery For Diabetes

    Bariatric Surgery For Diabetes

    Wednesday, July 9 2014 5:15 PM EDT2014-07-09 21:15:09 GMT
    Nearly 90 percent of people with type-two diabetes are obese and as more Americans gain weight, more will likely face a diabetes diagnosis. In fact, the American Diabetes Association predicts that one in three adults will have diabetes by the year 2050. For years, we’ve heard about weight loss surgery and its effect on diabetes. Now, a new study is showing how well the popular surgery is working to stop this serious disease.more>>
    Nearly 90 percent of people with type-two diabetes are obese and as more Americans gain weight, more will likely face a diabetes diagnosis. In fact, the American Diabetes Association predicts that one in three adults will have diabetes by the year 2050. For years, we’ve heard about weight loss surgery and its effect on diabetes. Now, a new study is showing how well the popular surgery is working to stop this serious disease.more>>
  • Ankle Replacement

    Ankle Replacement

    Tuesday, July 8 2014 5:15 PM EDT2014-07-08 21:15:10 GMT
    More than 50 million Americans suffer from some form of arthritis. Between 6 percent and 13 percent of them have ankle arthritis. These patients feel pain with every single step they take, but now ankle replacements are giving patients a new lease on life.more>>
    More than 50 million Americans suffer from some form of arthritis. Between 6 percent and 13 percent of them have ankle arthritis. These patients feel pain with every single step they take, but now ankle replacements are giving patients a new lease on life.more>>
  • 3D Knee

    3D Knee

    Monday, July 7 2014 5:15 PM EDT2014-07-07 21:15:09 GMT
    In the past ten years, the number of total knee replacements in the U.S. has doubled and many of those patients are much younger than ever before. Now, new technology allows doctors to make replacement knees that are the perfect fit.more>>
    In the past ten years, the number of total knee replacements in the U.S. has doubled and many of those patients are much younger than ever before. Now, new technology allows doctors to make replacement knees that are the perfect fit.more>>
Powered by WorldNow
Powered by WorldNow
All content © Copyright 2000 - 2014 NewsChannel 5 (WTVF-TV) and WorldNow. All Rights Reserved.
For more information on this site, please read our Privacy Policy and Terms of Service.